Exercise 1: Oxidation numbers

Meret Aeppl

Assign the oxidation numbers to each atom in the following compounds:

- NH₃
- N₂
- NO₂-
- H₂S
- $S_2O_3^{2-}$
- HCO₃-
- HCOOH
- C₆H₁₂O₆

Exercise 1: Solution

Assign the oxidation numbers to each atom in the following compounds:

- N(-III)H(+I)₃
- N(0)₂
- N(+III)O(-II)₂-
- H(+I)₂S(-II)
- $S(+II)_2O(-II)_3^{2-}$
- H(+I)C(+IV)O(-II)₃-
- H(+I)C(+II)O(-II)O(-II)H(+I)
- $C(0)_6H(+I)_{12}O(-II)_6$

Exercise 2: Iron oxidation

1eret Aeppli

Dissolved ionic iron exists in anoxic (i.e., in the absence of oxygen) ground water as the reduced species Fe^{2+} . When such waters are used from drinking water supplies and the water becomes exposed to the atmosphere, the Fe^{2+} is oxidized by O_2 to Fe^{III} (ferric iron), which is insoluble at neutral pH and precipitates as $Fe(OH)_3(s)$.

Hypochlorous acid (HOCl), a common disinfectant, oxidizes Fe^{II} very rapidly to Fe^{III}.

- a. Write the balanced equation for the oxidation of Fe²⁺ to Fe(OH)₃(s) by O_2 .
- b. Write the balanced equation for the oxidation of Fe^{2+} to $Fe(OH)_3(s)$ by HOCI.

See example in revisions

Exercise 2: Solution

1. divide eq. into half-reactions and balance each half-reaction for mass & charge

$$Fe^{2+} = Fe^{3+} + 1e^{-}$$

$$1/4O_2 + H^+ + e^- = 1/2H_2O$$

2. equalize the number of e- transferred

Multiply both half reactions by 4:

$$4Fe^{2+} = 4Fe^{3+} + 4e^{-}$$

$$O_2 + 4H^+ + 4e^- = 2H_2O$$

3. consider precipitation of $Fe(OH)_3$:

$$Fe^{3+} + 3H_2O = Fe(OH)_3 + 3H^+$$

Multiply by four

$$4Fe^{3+} + 12H_2O = 4Fe(OH)_3 + 12H^+$$

4. sum up half-reactions

$$4Fe^{2+} + O_2 + 4H^+ + 12H_2O = 4Fe(OH)_3 + 12H^+ + 2H_2O$$

5. balance H+ and H₂O

$$4Fe^{2+} + O_2 + 10H_2O = 4Fe(OH)_3 + 8H^+$$

Exercise 2: Solution

1. divide eq. into half-reactions and balance each half-reaction for mass & charge

$$Fe^{2+} = Fe^{3+} + 1e^{-}$$

 $HOCl + 2e^{-} = Cl^{-} + OH^{-}$

2. equalize the number of e- transferred

Multiply oxidation half reaction by 2:

$$2Fe^{2+} = 2Fe^{3+} + 2e^{-}$$

3. consider precipitation of $Fe(OH)_3$:

$$Fe^{3+} + 3H_2O = Fe(OH)_3 + 3H^+$$

Multiply by two

$$2Fe^{3+} + 6H_2O = 2Fe(OH)_3 + 6H^+$$

4. sum up half-reactions

$$2Fe^{2+} + HOCI + 6H_2O = 2Fe(OH)_3 + CI^- + OH^- + 6H^+$$

Exercise 3: Nernst equation

Meret Aeppli

1. In a system with Zn²⁺,Cu²⁺, Zn, and Cu, how high is the Cu²⁺ equilibrium concentration for a Zn²⁺ concentration of 0.1 M? Estimate the concentration from the following equilibrium (assume an activity coefficient of 1):

$$Zn(s) + Cu^{2+} = Zn^{2+} + Cu(s)$$

2. In a system with MnO_4^- and Fe^{2+} , can Fe^{2+} be oxidized by MnO_4^- ? Use $E^0 = 1.51 \text{ V}$ for MnO_4^- reduction to Mn^{2+} and $E^0 = 0.77 \text{ V}$ for Fe^{3+} reduction to Fe^{2+} (assume an activity coefficient of 1).

Exercise 3: Solution

Meret Aeppli

Part 1: Cu and Zn

$$[Cu^{2+}] = ?$$
 for $[Zn^{2+}] = 0.1$ M

$$Zn(s) + Cu^{2+} = Zn^{2+} + Cu(s)$$

$$\Delta E = \Delta E^0 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

At equilibrium, $\Delta E = 0$

$$\Delta E^0 = 1.1 = \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

$$\log[Zn^{2+}] - \log[Cu^{2+}] = \frac{1.1 \times 2}{0.059}$$

$$[Cu^{2+}] = 10^{-39} M$$

Exercise 3: Solution

Part 2: Mn and Fe

$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$
 $E^0 = 1.51 V$ $Fe^{3+} + e^- = Fe^{2+}$ $E^0 = 0.77 V$

$$MnO_4^- + 8H^+ + 5 Fe^{2+} = Mn^{2+} + 5Fe^{3+} + 4H_2O$$
 $E^0 = 0.74 V$

$$\Delta E = \Delta E^0 - \frac{0.059}{n} \log \frac{[Mn^{2+}][Fe^{3+}]^5}{[MnO_4^-][Fe^{2+}]^5[H^+]^8}$$

At equilibrium: $\Delta E = 0$; solve equation for log Q

$$\log Q = \frac{5*0.74}{0.059} = 62$$

 $K = 10^{62}$, i.e., the equilibrium is very strongly on the right side.

Fe²⁺ oxidation by MnO_4 is possible.

Exercise 4: Reduction potentials

Hal	lf-reac	ction
11a	II-ICac	uon

Oxidized Species	Reduced Species	E_{H}^{0} (V)	$E_{\mathrm{H}}^{0}\left(\mathbf{W}\right)$ $\left(\mathbf{V}\right)$	$\Delta_{\rm r}G^0({\rm W})/n^c$ (kJ mol-1)
(1a)	$O_2(g) + 4 H^+ + 4 e^- = 2 H_2O$	+1.23	+0.81	-78.3
(1b)	$O_2(aq) + 4 H^+ + 4 e^- = 2 H_2O$	+1.19	+0.77	-74.3
(2)	$2 \text{ NO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- = \text{N}_2(\text{g}) + 6 \text{ H}_2\text{O}$	+1.24	+0.74	-72.1
(3)	$MnO_2(s) + HCO_3^-(10^{-3}) + 3 H^+ + 2 e^- = MnCO_3(s) + 2 H_2O$		$+0.53^{b}$	-50.7^{b}
(4)	$NO_3^- + 2 H^+ + 2 e^- = NO_2^- + H_2O$	+0.85	+0.43	-41.6
(5)	$NO_3^2 + 10 H^+ + 8 e^- = NH_4^+ + 3 H_2O$	+0.88	+0.36	-35.0
(6)	$FeOOH(s) + HCO_3^- (10^{-3} \text{ M}) + 2 \text{ H}^+ + e^- = FeCO_3(s) + 2 \text{ H}_2O$		$-0.05^{\ b}$	+4.8 b

W denotes environmentally realistic conditions

- Formulate the Nernst equation and extract the pH dependence for eq. 1b.
- 2. Calculate E_{H}^{0} (W) at pH 7 (1 M O_{2}) for eq. 1b.

1.
$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

$$E = E^0 - \frac{0.059}{n} \log \frac{1}{[O_2][H^+]^4}$$

$$E = E^0 - \frac{0.059*4}{4} pH - \frac{0.059}{n} log \frac{1}{[O_2]} = E^0 - 0.059 pH - \frac{0.059}{4} log \frac{1}{[O_2]}$$

2.
$$E^{0'}_{H}(W) = 1.19 - 7*0.059 - \frac{0.059}{4} \log 1 = 1.19 - 7*0.059 - 0 = 0.77 \text{ V}$$